Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

De novo SNP discovery and genetic linkage mapping in poplar using restriction site associated DNA and whole-genome sequencing technologies.

Identifieur interne : 001931 ( Main/Exploration ); précédent : 001930; suivant : 001932

De novo SNP discovery and genetic linkage mapping in poplar using restriction site associated DNA and whole-genome sequencing technologies.

Auteurs : Mohaddeseh Mousavi [République populaire de Chine] ; Chunfa Tong [République populaire de Chine] ; Fenxiang Liu [République populaire de Chine] ; Shentong Tao [République populaire de Chine] ; Jiyan Wu [République populaire de Chine] ; Huogen Li [République populaire de Chine] ; Jisen Shi [République populaire de Chine]

Source :

RBID : pubmed:27538483

Descripteurs français

English descriptors

Abstract

BACKGROUND

Restriction site associated DNA sequencing (RAD-seq), a next-generation sequencing technology, has greatly facilitated genetic linkage mapping studies in outbred species. RAD-seq is capable of discovering thousands of genetic markers for linkage mapping across many individuals, and can be applied in species with or without a reference genome. Although several analytical tools are available for RAD-seq data, alternative strategies are necessary for improving the marker quality and hence the genetic mapping accuracy.

RESULTS

We demonstrate a strategy for constructing dense genetic linkage maps in hybrid forest trees by combining RAD-seq and whole-genome sequencing technologies. We performed RAD-seq of 150 progeny and whole-genome sequencing of the two parents in an F1 hybrid population of Populus deltoides × P. simonii. Two rough references were assembled from the whole-genome sequencing reads of the two parents separately. Based on the parental reference sequences, 3442 high-quality single nucleotide polymorphisms (SNPs) were identified that segregate in the ratio of 1:1. The maternal linkage map of P. deltoides was constructed with 2012 SNPs, containing 19 linkage groups and spanning 4067.16 cM of the genome with an average distance of 2.04 cM between adjacent markers, while the male map of P. simonii consisted of 1430 SNPs and the same number of linkage groups with a total length of 4356.04 cM and an average interval distance of 3.09 cM. Collinearity between the parental linkage maps and the reference genome of P. trichocarpa was also investigated. Compared with the result on the basis of the existing reference genome, our strategy identified more high-quality SNPs and generated parental linkage groups that nicely match the karyotype of Populus.

CONCLUSIONS

The strategy of simultaneously using RAD and whole-genome sequencing technologies can be applied to constructing high-density genetic maps in forest trees regardless of whether a reference genome exists. The two parental linkage maps constructed here provide more accurate genetic resources for unraveling quantitative trait loci and accelerating molecular breeding programs, as well as for comparative genomics in Populus.


DOI: 10.1186/s12864-016-3003-9
PubMed: 27538483
PubMed Central: PMC4991039


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">De novo SNP discovery and genetic linkage mapping in poplar using restriction site associated DNA and whole-genome sequencing technologies.</title>
<author>
<name sortKey="Mousavi, Mohaddeseh" sort="Mousavi, Mohaddeseh" uniqKey="Mousavi M" first="Mohaddeseh" last="Mousavi">Mohaddeseh Mousavi</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tong, Chunfa" sort="Tong, Chunfa" uniqKey="Tong C" first="Chunfa" last="Tong">Chunfa Tong</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China. tongchf@njfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Fenxiang" sort="Liu, Fenxiang" uniqKey="Liu F" first="Fenxiang" last="Liu">Fenxiang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tao, Shentong" sort="Tao, Shentong" uniqKey="Tao S" first="Shentong" last="Tao">Shentong Tao</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Jiyan" sort="Wu, Jiyan" uniqKey="Wu J" first="Jiyan" last="Wu">Jiyan Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Huogen" sort="Li, Huogen" uniqKey="Li H" first="Huogen" last="Li">Huogen Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Jisen" sort="Shi, Jisen" uniqKey="Shi J" first="Jisen" last="Shi">Jisen Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27538483</idno>
<idno type="pmid">27538483</idno>
<idno type="doi">10.1186/s12864-016-3003-9</idno>
<idno type="pmc">PMC4991039</idno>
<idno type="wicri:Area/Main/Corpus">001661</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001661</idno>
<idno type="wicri:Area/Main/Curation">001661</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001661</idno>
<idno type="wicri:Area/Main/Exploration">001661</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">De novo SNP discovery and genetic linkage mapping in poplar using restriction site associated DNA and whole-genome sequencing technologies.</title>
<author>
<name sortKey="Mousavi, Mohaddeseh" sort="Mousavi, Mohaddeseh" uniqKey="Mousavi M" first="Mohaddeseh" last="Mousavi">Mohaddeseh Mousavi</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tong, Chunfa" sort="Tong, Chunfa" uniqKey="Tong C" first="Chunfa" last="Tong">Chunfa Tong</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China. tongchf@njfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Fenxiang" sort="Liu, Fenxiang" uniqKey="Liu F" first="Fenxiang" last="Liu">Fenxiang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tao, Shentong" sort="Tao, Shentong" uniqKey="Tao S" first="Shentong" last="Tao">Shentong Tao</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Jiyan" sort="Wu, Jiyan" uniqKey="Wu J" first="Jiyan" last="Wu">Jiyan Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Huogen" sort="Li, Huogen" uniqKey="Li H" first="Huogen" last="Li">Huogen Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Jisen" sort="Shi, Jisen" uniqKey="Shi J" first="Jisen" last="Shi">Jisen Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chimera (genetics)</term>
<term>Chromosome Mapping (methods)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>Genetic Linkage (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (genetics)</term>
<term>Quantitative Trait Loci (MeSH)</term>
<term>Restriction Mapping (methods)</term>
<term>Sequence Analysis, DNA (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (méthodes)</term>
<term>Cartographie chromosomique (méthodes)</term>
<term>Cartographie de restriction (méthodes)</term>
<term>Chimère (génétique)</term>
<term>Chromosomes de plante (génétique)</term>
<term>Génome végétal (MeSH)</term>
<term>Liaison génétique (MeSH)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Populus (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chimera</term>
<term>Chromosomes, Plant</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chimère</term>
<term>Chromosomes de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Restriction Mapping</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Cartographie chromosomique</term>
<term>Cartographie de restriction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Linkage</term>
<term>Genome, Plant</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome végétal</term>
<term>Liaison génétique</term>
<term>Locus de caractère quantitatif</term>
<term>Polymorphisme de nucléotide simple</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Restriction site associated DNA sequencing (RAD-seq), a next-generation sequencing technology, has greatly facilitated genetic linkage mapping studies in outbred species. RAD-seq is capable of discovering thousands of genetic markers for linkage mapping across many individuals, and can be applied in species with or without a reference genome. Although several analytical tools are available for RAD-seq data, alternative strategies are necessary for improving the marker quality and hence the genetic mapping accuracy.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We demonstrate a strategy for constructing dense genetic linkage maps in hybrid forest trees by combining RAD-seq and whole-genome sequencing technologies. We performed RAD-seq of 150 progeny and whole-genome sequencing of the two parents in an F1 hybrid population of Populus deltoides × P. simonii. Two rough references were assembled from the whole-genome sequencing reads of the two parents separately. Based on the parental reference sequences, 3442 high-quality single nucleotide polymorphisms (SNPs) were identified that segregate in the ratio of 1:1. The maternal linkage map of P. deltoides was constructed with 2012 SNPs, containing 19 linkage groups and spanning 4067.16 cM of the genome with an average distance of 2.04 cM between adjacent markers, while the male map of P. simonii consisted of 1430 SNPs and the same number of linkage groups with a total length of 4356.04 cM and an average interval distance of 3.09 cM. Collinearity between the parental linkage maps and the reference genome of P. trichocarpa was also investigated. Compared with the result on the basis of the existing reference genome, our strategy identified more high-quality SNPs and generated parental linkage groups that nicely match the karyotype of Populus.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The strategy of simultaneously using RAD and whole-genome sequencing technologies can be applied to constructing high-density genetic maps in forest trees regardless of whether a reference genome exists. The two parental linkage maps constructed here provide more accurate genetic resources for unraveling quantitative trait loci and accelerating molecular breeding programs, as well as for comparative genomics in Populus.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27538483</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<PubDate>
<Year>2016</Year>
<Month>08</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>De novo SNP discovery and genetic linkage mapping in poplar using restriction site associated DNA and whole-genome sequencing technologies.</ArticleTitle>
<Pagination>
<MedlinePgn>656</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-016-3003-9</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Restriction site associated DNA sequencing (RAD-seq), a next-generation sequencing technology, has greatly facilitated genetic linkage mapping studies in outbred species. RAD-seq is capable of discovering thousands of genetic markers for linkage mapping across many individuals, and can be applied in species with or without a reference genome. Although several analytical tools are available for RAD-seq data, alternative strategies are necessary for improving the marker quality and hence the genetic mapping accuracy.</AbstractText>
<AbstractText Label="RESULTS">We demonstrate a strategy for constructing dense genetic linkage maps in hybrid forest trees by combining RAD-seq and whole-genome sequencing technologies. We performed RAD-seq of 150 progeny and whole-genome sequencing of the two parents in an F1 hybrid population of Populus deltoides × P. simonii. Two rough references were assembled from the whole-genome sequencing reads of the two parents separately. Based on the parental reference sequences, 3442 high-quality single nucleotide polymorphisms (SNPs) were identified that segregate in the ratio of 1:1. The maternal linkage map of P. deltoides was constructed with 2012 SNPs, containing 19 linkage groups and spanning 4067.16 cM of the genome with an average distance of 2.04 cM between adjacent markers, while the male map of P. simonii consisted of 1430 SNPs and the same number of linkage groups with a total length of 4356.04 cM and an average interval distance of 3.09 cM. Collinearity between the parental linkage maps and the reference genome of P. trichocarpa was also investigated. Compared with the result on the basis of the existing reference genome, our strategy identified more high-quality SNPs and generated parental linkage groups that nicely match the karyotype of Populus.</AbstractText>
<AbstractText Label="CONCLUSIONS">The strategy of simultaneously using RAD and whole-genome sequencing technologies can be applied to constructing high-density genetic maps in forest trees regardless of whether a reference genome exists. The two parental linkage maps constructed here provide more accurate genetic resources for unraveling quantitative trait loci and accelerating molecular breeding programs, as well as for comparative genomics in Populus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mousavi</LastName>
<ForeName>Mohaddeseh</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tong</LastName>
<ForeName>Chunfa</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0001-9795-211X</Identifier>
<AffiliationInfo>
<Affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China. tongchf@njfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Fenxiang</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tao</LastName>
<ForeName>Shentong</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Jiyan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Huogen</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Jisen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>08</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="N">Chimera</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008040" MajorTopicYN="N">Genetic Linkage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015183" MajorTopicYN="N">Restriction Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Genetic linkage map</Keyword>
<Keyword MajorTopicYN="Y">Populus</Keyword>
<Keyword MajorTopicYN="Y">Restriction site associated DNA</Keyword>
<Keyword MajorTopicYN="Y">Single nucleotide polymorphism</Keyword>
<Keyword MajorTopicYN="Y">Whole-genome sequencing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>03</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27538483</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-016-3003-9</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-016-3003-9</ArticleId>
<ArticleId IdType="pmc">PMC4991039</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2010 Feb 23;11:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):810-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18340039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e58700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23527008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Jun 15;13:240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22702473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Jan 13;16:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 20;10(4):e0124781</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25894395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Feb;12(2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Apr 26;6(4):e19315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21541297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jun;206(4):1283-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25385325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Mar;196(3):875-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24653210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(6):1063-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2011 Aug;1(3):171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Jan 04;12:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 30;497(7451):579-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2015 Jun 19;6:220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26150829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 May;43(5):491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 May 04;6(5):e19379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21573248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Jun 19;510(7505):356-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24919147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2014 Jul 16;4(9):1681-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25031181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1999 Jul;22(3):271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10391215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 May;122(8):1467-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21344184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e30619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22312429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Nov 1;28(21):2732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22942077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jan 23;16:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25613058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jun 15;29(12):1492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Jun;22(11):3151-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23110438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Aug;137(4):1121-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7982566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Jan 16;14:32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23324215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Mar;18(3):422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Aug 21;12:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22908993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Jul 1;30(13):1844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24603985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 15;27(16):2187-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21712251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Mar 10;11(3):e0150692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26964097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Feb;20(2):265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20019144</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Mousavi, Mohaddeseh" sort="Mousavi, Mohaddeseh" uniqKey="Mousavi M" first="Mohaddeseh" last="Mousavi">Mohaddeseh Mousavi</name>
</noRegion>
<name sortKey="Li, Huogen" sort="Li, Huogen" uniqKey="Li H" first="Huogen" last="Li">Huogen Li</name>
<name sortKey="Liu, Fenxiang" sort="Liu, Fenxiang" uniqKey="Liu F" first="Fenxiang" last="Liu">Fenxiang Liu</name>
<name sortKey="Shi, Jisen" sort="Shi, Jisen" uniqKey="Shi J" first="Jisen" last="Shi">Jisen Shi</name>
<name sortKey="Tao, Shentong" sort="Tao, Shentong" uniqKey="Tao S" first="Shentong" last="Tao">Shentong Tao</name>
<name sortKey="Tong, Chunfa" sort="Tong, Chunfa" uniqKey="Tong C" first="Chunfa" last="Tong">Chunfa Tong</name>
<name sortKey="Wu, Jiyan" sort="Wu, Jiyan" uniqKey="Wu J" first="Jiyan" last="Wu">Jiyan Wu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001931 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001931 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27538483
   |texte=   De novo SNP discovery and genetic linkage mapping in poplar using restriction site associated DNA and whole-genome sequencing technologies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27538483" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020